Optical Fiber Transceiver

CTrans OL-.../P/RMD
CTrans OL-.../ST/RMD

User Manual
User manual for Optical Fiber Transceiver CTrans OL version 3.0

Document version: v1.1
Documentation date: May 21, 2015

No part of this document or the software described herein may be reproduced in any form without prior written agreement from EMS Dr. Thomas Wünsche.

For technical assistance please contact:

EMS Dr. Thomas Wünsche
Sonnenhang 3
D-85304 Ilmünster

Tel. +49-8441-490260
Fax +49-8441-81860
Email: support@ems-wuensche.com

Our products are continuously improved. Due to this fact specifications may be changed at any time and without announcement.

WARNING: CTrans OL hardware and software may not be used in applications where damage to life, health or private property may result from failures in or caused by these components.
Content

1 **Overview**
 1.1 Attributes
 1.2 General Description
 1.3 Ordering Information

2 **Electrical Characteristics**
 2.1 Absolute Limiting Values
 2.2 Nominal Values
 2.3 Dimensions

3 **Operating Instructions**
 3.1 Layout and Connection
 3.2 Block Diagram

4 **Appendix**
 4.1 Topology examples
 4.2 Instruction for Disposal
 4.3 FCC Statement
 4.4 CE Conformity

EMS Dr. Thomas Wünsche
1 Overview

1.1 Attributes

- Coupling of CAN systems by optical fiber
- Available for PMMA- and glass fiber, connection by ST connector or by plugging
- Protocol transparent; CAN error handling mechanisms are preserved
- Extended error suppression

1.2 General Description

CTrans OL acts as a transceiver for protocol transparent transmission of CAN signals between copper based sections via an optical fiber.

Several technical improvements can be obtained by optical transmission of CAN signals, such as secure separation of high voltages and insensitivity to electromagnetic perturbation. Furthermore the transparent transmission of CAN signals with CTrans OL preserves the main benefits of CAN, such as error correction and priority driven bus access.

Like repeaters CTrans OL can be used to build flexible wiring topologies. Star and tree structures as well as stub lines can be realized. The integrated error supression reduces the influence of faulty segments onto intact sections.

Depending on the type of the device either cost effective 1mm PMMA/POF fibers with plugged connection or 50/125μm or 62,5/125μm multimode glass fibers with ST connectors can be used. Depending on the type of fiber a wiring distance up to 1000m can be achieved.
1.3 Ordering Information

<table>
<thead>
<tr>
<th>Code</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>12-03-0xx-yy</td>
<td>CTrans OL-.../P/RMD Optical fiber transceiver for rail mount application, pluggable connection for PMMA fiber, range up to 40m (...inhibit time)</td>
</tr>
<tr>
<td>12-03-1xx-yy</td>
<td>CTrans OL-.../ST/RMD Optical fiber transceiver for rail mount application, ST connector for optical fiber, range up to 1000m (...inhibit time)</td>
</tr>
</tbody>
</table>

Note: xx denotes inhibit time:
- 02 -5 500ns
- 03 -10 1000ns
- 04 -20 2000ns
- 05 -50 5000ns
- 06 -100 10000ns

yy denotes language of delivery:
- 10 german
- 20 english
2 Electrical Characteristics

2.1 Absolute Limiting Values

Any (also temporary) stress in excess of the limiting values may cause permanent damage on CTrans OL and connected devices.

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Min.</th>
<th>Max.</th>
<th>Unit</th>
</tr>
</thead>
<tbody>
<tr>
<td>Storage temperature</td>
<td>-30</td>
<td>+80</td>
<td>°C</td>
</tr>
<tr>
<td>Operating temperature</td>
<td>-20</td>
<td>+60</td>
<td>°C</td>
</tr>
<tr>
<td>Power supply voltage</td>
<td>-100</td>
<td>+35</td>
<td>V</td>
</tr>
<tr>
<td>Voltage on signal lines</td>
<td>-30</td>
<td>+30</td>
<td>V</td>
</tr>
<tr>
<td>Maximum power dissipation (at 60°C)</td>
<td>-</td>
<td>2000</td>
<td>mW</td>
</tr>
<tr>
<td>Maximum distance 'P' type PMMA/POF at 20°C</td>
<td>-</td>
<td>40</td>
<td>m</td>
</tr>
<tr>
<td>Maximum distance 'ST' type at 20°C</td>
<td>-</td>
<td>1000</td>
<td>m</td>
</tr>
</tbody>
</table>

2.2 Nominal Values

All values, unless otherwise specified, refer to a supply voltage of 24V and an environmental temperature of 20°C.

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Min.</th>
<th>Typ.</th>
<th>Max.</th>
<th>Unit</th>
</tr>
</thead>
<tbody>
<tr>
<td>Current consumption (running idle)</td>
<td>-</td>
<td>30</td>
<td>-</td>
<td>mA</td>
</tr>
<tr>
<td>Current consumption (250kBit/s, 100% load)</td>
<td>-</td>
<td>40</td>
<td>-</td>
<td>mA</td>
</tr>
<tr>
<td>Power supply voltage</td>
<td>10</td>
<td>24</td>
<td>30</td>
<td>V</td>
</tr>
<tr>
<td>Propagation delay (per pair of devices)</td>
<td>-</td>
<td>125</td>
<td>300</td>
<td>ns</td>
</tr>
<tr>
<td>Wavelength 'P' type</td>
<td>-</td>
<td>650</td>
<td>-</td>
<td>nm</td>
</tr>
<tr>
<td>Wavelength 'ST' type</td>
<td>-</td>
<td>850</td>
<td>-</td>
<td>nm</td>
</tr>
</tbody>
</table>
2.3 Dimensions

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Typ.</th>
<th>Unit</th>
</tr>
</thead>
<tbody>
<tr>
<td>Height</td>
<td>101</td>
<td>mm</td>
</tr>
<tr>
<td>Width</td>
<td>23</td>
<td>mm</td>
</tr>
<tr>
<td>Depth</td>
<td>79</td>
<td>mm</td>
</tr>
</tbody>
</table>
3 Operating Instructions

3.1 Layout and Connection

CTrans OL devices include one CAN segment (marked 'CAN') fed to a three pin pluggable terminal. Power is connected at a two pin pluggable terminal. The figure shows the locations of power, CAN and fiber optical connections. Three LEDs on the front panel indicate the status of power, CAN and optical transmissions.
3.2 Block Diagram
4 Appendix

4.1 Topology examples

Each CAN segment has to be terminated on both ends, typically using a 120 Ohm termination resistor between CAN-High and CAN-Low signal lines.

Legend

| LWL | OF Coupler | CAN | CAN Node | T | Termination |

Line topology with Optical Fiber Transceivers

Tree topology with Optical Fiber Transceivers
Star topology with Optical Fiber Transceivers
4.2 Instruction for Disposal

Electronic Equipment Act (WEEE)

EMS is selling its products exclusively to commercial customers. This is the reason why all devices are designed for commercial use and have to be disposed appropriately. In accordance to § 10 para. 2 clause 3 Electronic Equipment Act (WEEE) the disposal of EMS products is regulated the following way.

The equipment must not be disposed at the public collection points. In accordance with the applicable law the disposal has to be done by the customer for own account. The same applies to products, which have been sold to third parties, if those parties do not take care of a disposal in accordance to the applicable law. As an alternative the products can be returned to EMS free of charge.

4.3 FCC Statement

NOTE: This equipment has been tested and found to comply with the limits for a Class A digital device, pursuant to Part 15 of the FCC Rules. These limits are designed to provide reasonable protection against harmful interference when the equipment is operated in a commercial environment. This equipment generates, uses, and can radiate radio frequency energy and, if not installed and used in accordance with the instruction manual, may cause harmful interference to radio communications. Operation of this equipment in a residential area is likely to cause harmful interference in which case the user will be required to correct the interference at his own expense.
4.4 CE Conformity

Declaration of Conformity

The manufacturer

EMS Dr. Thomas Wünsche e.K.
Sonnenhang 3
85304 Ilmmünster
Germany

hereby declares, that the following products:

<table>
<thead>
<tr>
<th>Name</th>
<th>Article Number</th>
</tr>
</thead>
<tbody>
<tr>
<td>CTrans OL -.../P/RMD Version 3.0</td>
<td>12-03-0xx yy</td>
</tr>
<tr>
<td>CTrans OL -.../S1/RMD Version 3.0</td>
<td>12-03-1xx-yy</td>
</tr>
</tbody>
</table>

meets the requirements of the following standards:

Electromagnetic Immunity
EN 55024, VDE 0878 24:2011-09 – Information technology equipment – Immunity characteristics – Limits and methods of measurement (CISPR 24:2010); German version EN 55024:2010

Electromagnetic Emission

and therefore conform with the EU requirements on:

Electromagnetic compatibility (2004/108/EG)

In accordance with the above mentioned EU directives, the EC declarations of conformity and the associated documentation are held at the disposal of the competent authorities.

RoHS 2 EEE
The RoHS Directive (2011/65/EU) commits manufacturers of "Electrical and Electronic Equipment" (EEE) to secure compliance with the RoHS Directive before placing a CE mark.

Based on technical documentation and to the best of our knowledge, we hereby confirm that the above mentioned products do not contain any of the restricted substances according to Article 4 of the RoHS Directive in excess of the maximum concentration values tolerated by weight in any of their homogeneous materials.

Ilmmünster, 18.02.2015

[Signature]

Dr. Thomas Wünsche